
Bull. Nov. Comp.Center, Comp. Science, 40 (2016), 75–86
c⃝ 2016 NCC Publisher

Associative version of the Ramalingam
incremental algorithm for the dynamic all-pairs

shortest-path problem

A. S. Nepomniaschaya

Abstract. The paper proposes an associative version of the Ramalingam algo-
rithm for the dynamic update of the all-pairs shortest paths of a directed weighted
graph after inserting an edge. To this end, a model of associative (content address-
able) parallel systems with vertical processing (the STAR–machine) is used. The
associative version of the Ramalingam incremental algorithm is given as procedure
InsertEdge. We present an efficient implementation of this procedure on the STAR–
machine, prove its correctness and evaluate the time complexity.

Keywords: directed weighted graph, incremental algorithm, associative parallel
processor, access data by contents, the time complexity.

1. Introduction

Associative (content addressable) parallel processors of the SIMD type with
bit–serial (vertical) processing and simple processing elements (PEs) per-
form the massively parallel search by contents and use 2D tables as the
basic data structure. In particular, such an architecture is best suited for
natural and efficient implementation of graph algorithms. In [6], we propose
an abstract model of the SIMD type (the STAR–machine) that simulates
the run of such systems at the micro level. Associative parallel algorithms
are represented as corresponding procedures for the STAR–machine. In
[7], we present basic associative parallel algorithms that are used to design
different associative algorithms for different applications. Of special inter-
est is implementation of dynamic graph algorithms on the STAR–machine.
These algorithms update the solution of a problem after dynamic changes
faster than the fastest static algorithm that computes the entire graph from
scratch. Let us enumerate a group of dynamic graph algorithms imple-
mented on the STAR–machine. In [8], we propose two associative parallel
algorithms for the dynamic edge update of a minimum spanning tree (MST)
of an undirected graph. In [9–10], we propose associative parallel algorithms
for the dynamic reconstruction of an MST after deleting and after inserting
a new vertex along with its incident edges. In [11], we present associative
versions of the Italiano algorithms for the dynamic update of the transitive
closure of a directed graph after inserting and after deleting an edge. In
[12–13], we propose associative versions of the Ramalingam algorithms for

76 A. S. Nepomniaschaya

updating the shortest paths subgraph with a sink after inserting and after
deleting an edge.

In this paper, we study the dynamic update of the all-pairs shortest
paths (APSP) by means of the STAR–machine. The most general types of
update operations for the APSP problem include insertions and deletions
of edges, update operations on edge weights, finding the shortest distance
and finding the shortest path between two vertices, if any. An algorithm
is called fully dynamic if the update operations include both insertions and
deletions of edges. A partially dynamic algorithm is called incremental if it
supports only insertions and decremental if only deletions are supported.

In the case of positive edge weights, several solutions have been proposed
for the dynamic maintenance of the all–pairs shortest paths. Ausiello et al.
[1] propose an efficient solution for the incremental APSP problem assum-
ing that edge weights are restricted in the range of integers [1..C]. Chaud-
huri and Zaroliagis [2] devise efficient solutions for the APSP problem for
bounded treewidth graphs when the weight of edges changes. King [4] pro-
poses fully dynamic algorithms for updating the all–pairs shortest paths in
directed graphs with positive integer weights less than C. Ramalingam [15]
proposes fully dynamic algorithms for updating the all-pairs shortest paths
in directed graphs with positive edge weights. Demetrescu and Italiano [3]
devise fully dynamic algorithms for the dynamic maintenance of the all–
pairs shortest paths in directed graphs with non–negative real edge weights.
Observe that algorithms of Ramalingam [15] are described by means of the
output bounded model in which the running time of an algorithm is analyzed
in terms of the output change rather than the input size.

In [14], we have constructed an associative version of the Ramalingam
decremental algorithm for the dynamic update of the all–pairs shortest paths
in a directed graph. This algorithm has been built as a modification of his
previous algorithm for updating the shortest paths subgraph with a sink
after deleting an edge from the graph. The associative version is given as a
group of algorithms that provide an efficient parallel execution of different
parts of the Ramalingam decremental algorithm on the STAR–machine. In
[14], we have also presented the main advantages of the associative version of
the Ramalingam decremental algorithm for updating the all–pairs shortest
paths.

Here, we construct an associative version of the Ramalingam incremental
algorithm for the dynamic update of the all–pairs shortest paths in a directed
graph. This algorithm is built as a modification of his previous algorithm
for updating the shortest paths subgraph with a sink after inserting an edge.
The associative version is given as procedure InsertEdge whose correctness
is proved and the time complexity is avaluated.

The dynamic all-pairs shortest-path problem for an edge insertion 77

2. Basic definitions

In this section, we first present preliminaries. Then we recall some operations
of the STAR–machine that will be used in the paper.

Let G = (V,E) be a directed weighted graph with the set of vertices
V = {1, 2, . . . , n}, the set of directed edges (arcs) E and the function wt that
assigns a weight to every edge. We will consider graphs with a distinguished
vertex z called sink.

An adjacency matrix Adj = [aij] of a directed graph G is an n×n Boolean
matrix, where aij = 1 if and only if there is an arc from the vertex i to the
vertex j in the set E.

An arc e directed from i to j is denoted by e = (i, j), where the vertex i
is the tail of e and the vertex j is its head. We assume that all arcs have a
positive weight and wt(u, v) = ∞ if (u, v) /∈ E.

The infinity will be implemented by the value
∑n

i=1 ci, where ci is the
maximal weight of arcs outgoing from the vertex i. Let h be the number of
bits for coding this sum.

A path from u to z in G is a finite sequence of vertices u = v1, v2, . . . , vk =
z, where (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1 and k > 1. The shortest path
from u to z is the path of the minimal sum of weights of its arcs. Let
dist(u, z) denote the length of the shortest path from u to z.

By analogy with Ramalingam, we introduce the following notations.

Let Succ(u) = {x / u → x ∈ E} and Pred(u) = {y / y → u ∈ E}.
Let an arc (i, j) be inserted into G. A vertex u is called affected in G if

the length of the shortest path from u to z changes after inserting the edge
(i, j). Let AffectedVert be a set of all vertices such that the length of their
shortest path to z changes after inserting (i, j).

A predicate SP (a, b, c) is defined as follows:

SP (a, b, c) ≡ (dist(a, c) = wt(a, b) + dist(b, c)) ∧ (dist(a, c) ̸= ∞.)

This predicate verifies whether the arc (a, b) belongs to the shortest path
from the vertex a to the selected sink c.

Now we consider some operations of our model. Its run is described by
means of the language STAR which is an extension of Pascal. To simulate
the data processing in the matrix memory, the language STAR uses the data
types word, slice, and table. The types slice and word are used for the
bit column access and bit row access, respectively, and the type table is
used for defining the tabular data.

Let X,Y be variables of the type slice and i be a variable of the type
integer. We use the following operations:

SET(Y) sets all components of Y to ′1′; CLR(Y) sets all components of
Y to ′0′; Y (i) selects the i-th component of Y ; FND(Y) returns the ordinal
number i of the first (the uppermost) bit ′1′ of Y ; STEP(Y) returns the
same result as FND(Y) and then resets the first bit ′1′ found to ′0′.

78 A. S. Nepomniaschaya

The bitwise Boolean operations are introduced in the usual way: X andY ,
X or Y , not Y , X xor Y . The predicate SOME(Y) results in true if there is
at least a single bit ′1′ in the slice Y .

Let v, w be variables of the type word and i, j be variables of the type
integer. We employ the following operations:

TRIM(i, j, w) cuts the substring of the string w from the i-th through
the j-th bits, where 1 ≤ i < j ≤| w |.

REP(i, j, v, w) replaces the substring w(i)w(i + 1) . . . w(j) of the string
w with the string v, where | v |= j − i+ 1 and 1 ≤ i < j <| w |.

ADD(v, w) performs the addition of binary strings v and w that have
the same length.

3. The Ramalingam incremental algorithm for updating the
all-pairs shortest paths

Let G be a directed graph and z be its sink. Let an arc (i, j) with wt(i, j) = c
be inserted into G. The Ramalingam algorithm for the dynamic update of
the all-paths shortest paths after inserting an arc into G runs as follows.
At first, it computes a set AffectedSinks. Then the simplified form of the
Ramalingam incremental algorithm for the dynamic update of the shortest
paths subgraph is applied to every vertex from the set AffectedSinks.

We first explain the simplified form of the Ramalingam incremental al-
gorithm for updating the shortest paths subgraph. It uses a set WorkSet
to save the updated edges, a set AffectedVert, and a set VisitedVert. The
set VisitedVert is used to avoid visiting any vertex more than once. The
simplified form of the Ramalingam algorithm runs as follows.

Initially, AffectedVert = ∅, WorkSet = {i, j}, and VisitedVert = {i}.
While WorkSet ̸= ∅, select and remove an edge (x, u) from WorkSet. If

wt(x, u)+dist(u, z) < dist(x, z), then insert x into the set AffectedVert and
the new shortest path from x to z is defined as wt(x, u) + dist(u, z).

Then every vertex y ∈ Pred(x) is updated as follows. One first checks
whether the predicate SP (y, x, z) is true and y /∈ V isitedV ert. If it is true,
then the arc (y, x) is inserted into WorkSet and the vertex y is inserted into
the set VisitedVert.

After updating all edges from the set WorkSet, the set AffectedV ert
will consist of all affected vertices obtained after inserting the arc (i, j) into
G. Moreover, one computes the new distance from every affected vertex to
the sink z.

In [15], the simplified form of the Ramalingam incremental algorithm is
given as the function InsertUpdate.

Now, we consider the Ramalingam incremental algorithm for updating
the all-paths shortest paths. It runs as follows. At first, the arc (i, j) is
inserted into G. Then the function InsertUpdate is applied, where the sink

The dynamic all-pairs shortest-path problem for an edge insertion 79

z = j to obtain the set AffectedSinks. After that the function InsertUpdate
is applied to every vertex from the set AffectedSinks. In [15], this algorithm
is given as procedure InsertEdge.

4. Associative version of the Ramalingam incremental
algorithm for updating the all–pairs shortest paths

To design an associative version of the Ramalingam incremental algorithm,
we employ the following data structure:

– an n × n adjacency matrix Adj, whose every i-th column saves with
bits ′1′ the heads of arcs outgoing from the vertex i;

– an n× hn matrix Weight that consists of n fields having h bits each.
The weight of an arc (i, j) is written in the j-th row of the i-th field;

– an n×hn matrix Cost that consists of n fields having h bits each. The
weight of an arc (i, j) is written in the i-th row of the j-th field;

– an n×hn matrix Dist that consists of n fields having h bits each. The
distance from the vertex i to the vertex j is written in the j-th row of the
i-th field;

– an n × hn matrix Dist1 that consists of n fields having h bits each.
The distance from the vertex i to the vertex j is written in the i-th row of
the j-th field;

– a slice AffectedV that saves with bits ′1′ positions of all affected ver-
tices.

We notice that the i-th field of the matrix Weight saves the weights of
arcs outgoing from the vertex i, while the i-th field of the matrix Cost saves
the weights of arcs entering the vertex i. Moreover, every j-th row of the
matrix Adj saves with bits ′1′ the tails of arcs entering the vertex j.

In [14], we propose the associative algorithm A2 for parallel execution
of a group of predicates SP (x, u, z) for all tails of arcs entering the vertex
u. This algorithm uses the matrices Cost, Adj, Dist, and Dist1. It returns a
slice that saves the tails of arcs (x, u) for which the corresponding predicates
are true.

We first propose the associative version of the simplified form of the
Ramalingam incremental algorithm for the dynamic update of the shortest
paths subgraph. It uses the slices AffectedV and V isitedV and the set WS
that is given as a matrix consisting of two columns along with a slice, say
X, to save the position of the last non-empty row.

The associative version of the simplified form of the Ramalingam incre-
mental algorithm for updating the shortest paths subgraph with a sink s
runs as follows.

Step 1. Initially, write zeros into the slices AffectedV, V isitedV , and X.
Step 2. Write the arc (i, j) into the first row of the matrix WS. Then

perform the operations V isitedV (i) :=′ 1′ and X(1) :=′ 1′.

80 A. S. Nepomniaschaya

Step 3. While X ̸= ∅ perform the following actions:
(3.1) Select the position (say, k) of the uppermost bit ′1′ in the slice X.

Let the arc (u, p) be written in the k-th row of the matrix WS.
(3.2) In the matrix Weight, select the weight of the arc (u, p). Denote

by w1 the value wt(u, p).
(3.3) In the matrix Dist, select the distance from the vertex p to the

sink s. Denote by w2 the value dist(p, s).
(3.4) Compute the sum of the values w1 and w2. Let w3 save this sum.
(3.5) In the matrix Dist, select the distance from the vertex u to the

sink s. Denote by w the value dist(u, s).
(3.6) If w3 ≥ w, then go to point 3.1 to update the current row of the

matrix WS. Otherwise, include the vertex u into the slice AffectedV.
(3.7) In the s-th row of the matrix Dist, replace the value dist(u, s) with

the smaller value w3. In the u-th row of the matrix Dist1, replace the value
dist(u, s) with the value w3.

(3.8) By means of the procedure ConputePred2, simultaneously define
all tails of arcs entering the vertex u for which the predicates SP (y, u, s) are
true. Let the procedure ConputePred2 return a slice, say Z.

(3.9) By means of a slice, say Z1, save those vertices from the slice Z
that do not belong to the set V isitedV . Include these vertices into the set
V isitedV .

(3.10) Include into the matrix WS every arc entering the vertex u whose
tail belongs to the slice Z1.

On the STAR–machine, this algorithm is implemented as procedure In-
sertUpdate.

The associative version of the Ramalingam incremental algorithm for the
dynamic update of the all–pairs shortest paths runs as follows. At first, the
arc (i, j) having wt(i, j) = v0 is included into the matrix Weight. Then
by means of the procedure InsertUpdate, one defines the set of all affected
sink vertices for the case when s = j. After that for every sink vertex, the
procedure InsertUpdate is performed.

5. Implementation on the STAR–machine of the
Ramalingam incremental algorithm for updating the
all–pairs shortest paths

In this section, we first present the procedure InsertUpdate and prove its
correctness. Then we consider the procedure InsertEdge.

The procedure InsertUpdate uses the arc (i, j) and the matrices Adj,
Weight, Cost, Dist and Dist1. It returns the slice AffectedV and the
updated matrices Dist and Dist1.

Remark 1. Let us agree that the record w: word(Trim) means that the
string w saves the result of the operation Trim and it consists of h bits.

The dynamic all-pairs shortest-path problem for an edge insertion 81

procedure InsertUpdate(i,j,h,n,s: integer; Weight,Cost: table;

Adj: table; var Dist,Dist1: table;

var AffectedV: slice(Adj));

var WS: array[1..2,1..n] of integer;

X,Y,Z,VisitedV: slice(Adj);

k,k1,l,l1,l2,p,u: integer;

v: word(Weight); w,w1,w2,w3: word(Trim);

1. Begin CLR(AffectedV); CLR(VisitedV); CLR(X);

2. X(1):=’1’; WS[1,1]:=i; WS[1,2]:=j;

/* The arc (i, j) is included into the first row of WS. */
3. VisitedV(i):=’1’;

/* The vertex i is included into the slice VisitedV. */

4. while SOME(X) do

5. begin k:=STEP(X); u:=WS[k,1]; p:=WS[k,2];

/* The uppermost arc (i, j) is deleted from WS. */
6. k1:=FND(not X);

7. v:=ROW(p,Weight);

/* The word v saves the p-th row of the matrix Weight. */
8. l1:=1+(u-1)h; l2:=uh; w1:=TRIM(l1,l2,v);

/* The word w1 saves wt(u, p). */
9. v:=ROW(s,Dist);

/* The word v saves the s-th row of the matrix Dist. */
10. l1:=1+(p-1)h; l2:=ph;

11. w2:=TRIM(l1,l2,v);

/* The word w2 saves dist(p, s). */
12. w3:=ADD(w1,w2);

/* The word w3 saves wt(u, p) + dist(p, s). */
13. l1:=1+(u-1)h; l2:=uh;

14. w:=TRIM(l1,l2,v);

/* The word w saves dist(u, s). */
15. if w3<w then

16. begin AffectedV(u):=’1’;

/* The vertex u is included into the slice AffectedV . */

17. REP(l1,l2,w3,v);

/* In the s-th row of the matrix Dist, the value dist(u, s)
is replaced with the smaller value w3. */

18. v:=ROW(u,Dist1);

19. l1:=1+(s-1)h; l2:=sh;

20. REP(l1,l2,w3,v);

/* In the u-th row of the matrix Dist1, the value dist(u, s)
is replaced with the value w3. */

21. ComputePred2(h,u,s,Adj,Cost,Dist,Dist1,Z);

/* The slice Z saves the tails of arcs entering the vertex u

82 A. S. Nepomniaschaya

for which the predicates SP (q, u, s) are true. */

22. Y:=Z and (not VisitedV);

23. VisitedV:=VisitedV or Y;

24. while SOME(Y) do

25. begin l:=STEP(Y);

26. WS[k1,1]:=l; WS[k1,2]:=u;

27. X(k1):=’1’; k1:=k1+1;

28. end;

29. end;

30. end;

31. End;

Remark 2. In this procedure, we use two counters for the slice X. At
the current iteration, the counter k saves the position of the uppermost
arc in the matrix WS. This position is defined by means of the operation
STEP(X). By means of the counter k1, we define the position of the row in
the matrix WS, where the new arc can be written. This position is defined
by means of the operation FND(notX).

Claim 1. Let an arc (i,j) be inserted into the directed weighted graph
G having n vertices and the sink s. Let the matrices Weight, Cost, Dist,
Dist1, and Adj be given. Let h be a parameter that is used in the matrices
Weight, Cost, Dist, and Dist1. Then the procedure InsertUpdate returns a
slice AffectedV that saves the vertices from which the shortest paths to the
sink should be recomputed.

Proof. (Sketch.) We prove this by induction in terms of the number of
updated arcs l in the matrix WS.

Basis is checked for l = 1, that is, the edge (i, j) is updated in WS. After
performing lines 1–3, the arc (i, j) is written in the first row of WS, the
vertex i is included into the slice V isitedV , and only the first bit in the slice
X is equal to one. After performing lines 5–6, k = 1, u = i, p = j, X = ∅,
that is, the arc (i, j) has been deleted from WS, and k1 = 1. After fulfilling
lines 7–8, the variable v saves the j-th row of the matrix Weight, l1 =
1+(i−1)h, l2 = ih, and the variable w1 saves wt(i, j). After performing lines
9–11, the variable v saves the s-th row of the matrix Dist, l1 = 1+(j−1)h,
l2 = jh, and the variable w2 saves the shortest path from j to s. After
fulfilling line 12, the variable w3 saves the value wt(i, j) + dist(j, s). After
performing lines 13–14, the variable w saves dist(i, s) because in view of line
9, the variable v saves the s-th row of the matrix Dist.

Now we compare the words w3 and w (line 15). If w3 ≥ w, we go to the
procedure end because X = ∅. Otherwise, we start to perform line 16. After
fulfilling lines 16-17, the vertex i is included into the slice AffectedV and
in the s-th row of the matrix Dist, the value dist(i, s) is replaced with the

The dynamic all-pairs shortest-path problem for an edge insertion 83

smaller value w3. After fulfilling lines 18–20 in the u-th row of the matrix
Dist1, the value dist(u, s) is replaced with the value w3. After performing
lines 21–22, the slice Y saves the tails of the not visited arcs entering the
vertex i, for which the predicates SP (q, i, s) are true. After performing line
23, we add these vertices to the slice V isitedV . Finally, by means of the
cycle while SOME(Y) do (lines 24–28), such an arc entering the vertex i is
saved in the corresponding row of the matrix WS.

Step of induction. Let the assertion be true for l ≥ 1. We prove it for the
case when l+1 arcs are updated in WS. By the inductive assumption, after
updating l arcs in the matrix WS, their positions are marked with zero in
the slice X, selected affected vertices are included into the slice AffectedV,
the corresponding distance from every new affected vertex to the sink s is
replaced with the smaller value both in the matrix Dist and in the matrix
Dist1, the arcs entering any new affected vertex q are saved in the matrix
WS, if their tails r are not visited vertices and they satisfy the predicates
SP (r, q, s).

Now we update the (l + 1)-th arc in WS. Since X ̸= ∅, we perform the
cycle while SOME(X) do. Here we reason by analogy with the basis.

This completes the proof.
Now we evaluate the time complexity of the procedure InsertUpdate.

Observe that it uses the auxiliary procedure ComputePred2. In [14], we
have shown that it takes O(h) time. Let q be the number of affected vertices
obtained after inserting the edge (i, j) into G. We obtain that the procedure
InsertUpdate takes O(qh) time.

The associative version of the Ramalingam incremental algorithm for
updating the all–pairs shortest paths runs as follows. At first, the arc i → j
is inserted into G. Then the procedure InsertUpdate is applied for s = j to
define the set of affected sink vertices. After that the procedure InsertUpdate
is applied to every affected sink vertex.

procedure InsertEdge(i,j,h,n: integer; v0: word(Trim);

var Adj: table; var Weight,Cost,Dist,Dist1: table);

/* The arc (i, j) will be inserted into the graph G,

h is the number of bits for coding the infinity. */

var l1,l2,z1: integer;

v1: word(Weight);

X,AffectedSinks: slice(Adj);

1. Begin v1:=ROW(j,Weight);

2. l1:=1+(i-1)h; l2:=ih;

3. REP(l1,l2,v0,v1);

4. ROW(j,Weight):=v1;

/* We insert wt(i, j) in the matrix Weight. */
5. v1:=ROW(i,Cost);

84 A. S. Nepomniaschaya

6. l1:=1+(j-1)h; l2:=jh;

7. REP(l1,l2,v0,v1);

8. ROW(i,Cost):=v1;

/* We insert wt(i, j) in the matrix Cost. */
9. X:=COL(i,Adj); X(j):=’1’. */

/* We include the arc (i, j) in the matrix Adj. */
10. InsertUpdate(i,j,h,n,j,Weight,Cost,Adj,

Dist,Dist1,AffectedV);

11. AffectedSinks:=AffectedV;

12. while SOME(AffectedSinks) do

13. begin z1:=STEP(AffectedSinks);

14. InsertUpdate(i,j,h,n,z1,Weight,Cost,Adj,

Dist,Dist1,AffectedV);

15. end;

16. end;

Let us evaluate the time complexity of the procedure InsertEdge. Taking
into account the time complexity of the procedure InsertUpdate, we obtain
that the procedure InsertEdge takes O(hkr) time per an insertion, where h
is the number of bits for coding the infinity, k is the number of affected sink
vertices that appear after inserting the arc (i, j) in the graph G, and r is
the total sum of affected vertices for different sink vertices.

Now, we present the main advantage of the associative version of the Ra-
malingam incremental algorithm for updating the all–pairs shortest paths.
This is finding in parallel the tails y of arcs entering any affected vertex u
for which the predicates SP (y, u, s) are true.

6. Conclusions

We have proposed the associative version of the Ramalingam incremental
algorithm for updating the all–pairs shortest paths on the STAR–machine
having no less than n PEs. The associative version is represented as pro-
cedure InsertEdge whose correctness is proved. We have obtained that the
procedure InsertEdge takes O(hkr) time per an insertion, where h is the
number of bits for coding the infinity, k is the number of affected sink ver-
tices that appear after inserting the arc (i, j) in the graph G, and r is the
total sum of affected vertices for different sink vertices. It is assumed that
each microstep of the STAR–machine takes one unit of time. We have also
presented the main advantage of the associative version of the Ramalingam
incremental algorithm for updating the all–pairs shortest paths.

We are planning to build associative algorithm for finding the k simple
shortest paths in a directed weighted graph.

The dynamic all-pairs shortest-path problem for an edge insertion 85

References

[1] Ausiello G., Italiano G.F., Marchetti-Spaccamela A., and Nanni U. Incremen-
tal algorithms for minimal length paths // J. of Algorithms. – 1991. – Vol. 12,
No. 4. – P. 615–638.

[2] Chaudhuri S., Zaroliagis C.D. Shortest path queries in digraphs of small
treewidth // Proc. Intern. Colloquiumon Automata Languages, and Program-
ming, Szeged, Hunhary, July 10–14, 1995. – Springer, 1995. – P. 244–255. –
(Lect. Notes Comput. Sci.; 944).

[3] Demetrescu C. and Italiano G.F. Fully dynamic all–pairs shortest paths with
real edge weights // Proc. 42nd IEEE Annual Symposium on Foundations of
Computer Science (FOCS’01), Las Vegas, Nevada. – 2001. – P. 260–267.

[4] King V. Fully dynamic algorithms for maintaining all–pairs shortest paths and
transitive closure in digraphs // Proc. 40th IEEE Symposium on Foundations
of Computer Science (FOCS’99). – 1999. – P. 81–99.

[5] Klein P.N., Rao S., Rauch M., and Subramanian S. Faster shortest path algo-
rithms for planar graphs // Proc. ACM Symposium on Theory of Computing,
Montreal, Quebec, Canada. – 1994. – P. 27–37.

[6] Nepomniaschaya A. S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. – IOS Press, 2000. – Vol. 43. – P. 227–243.

[7] Nepomniaschaya, A. S. Basic associative parallel algorithms for vertical pro-
cessing systems // Bulletin NCC. Series: Computer Science. – IIS Special Iss.
29. – NCC Publisher, 2009. – P. 63–77.

[8] Nepomniaschaya A.S. Associative parallel algorithms for dynamic edge update
of minimum spanning trees // Proc. 7th Intern. Conf. PaCT 2003. – Springer,
2003. – P. 141–150. – (Lect. Notes Comput. Sci.; 2763)

[9] Nepomniaschaya A.S. Associative parallel algorithm for dynamic reconstruct-
ing a minimum spanning tree after deletion of a vertex // Proc. 8th Intern.
Conf. PaCT 2005. – Springer, 2005. – P. 151–173. – (Lect. Notes Comput. Sci.;
3606)

[10] Nepomniaschaya A.S. Associative parallel algorithm for the dynamic update
of a minimum spanning tree after insertion of a new vertex // Cybernetics
and System Analysis. – Kiev: Naukova Dumka, 2006. – No. 1. – P. 19–31 (In
Russian). (English translation by Plenum Press).

[11] Nepomniaschaya A. S. Efficient implementation of the Italiano algorithms for
updating the transitive closure on associative parallel processors // Funda-
menta Informaticae. – IOS Press, 1989. – No. 2–3. – 2008. – P. 313–329,

[12] Nepomniaschaya. A. S. Associative version of the Ramalingam decremental al-
gorithm for dynamic updating the single-sink shortest paths subgraph // Proc.

86 A. S. Nepomniaschaya

of the 10-th Intern. Conf. on Parallel Computing Technologies, PaCT-2009,
Novosibirsk, Russia. – Springer, 2009. – P. 257–268. – (Lect. Notes Comput.
Sci.; 5698)

[13] Nepomniaschaya A. S. Associative version of the Ramalingam algorithm for
the dynamic update of the shortest paths subgraph after inserting a new edge
// Cybernetics and System Analysis. – Kiev: Naukova Dumka, 2012. – No. 3.
– P. 45–57 (In Russian). (English translation by Springer).

[14] Nepomniaschaya A. S. Associative version of the Ramalingam decremental al-
gorithm for the dynamic all–pairs shortest–path problem // Bulletin NCC.
Series: Computer Science. – 2016. – Iss. 39. – P. 37–50.

[15] Ramalingam G. Bounded Incremental Computation. – Springer, 1996. – (Lect.
Notes Comput. Sci.; 1089).

